Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 12(1): 11050, 2022 06 30.
Article in English | MEDLINE | ID: covidwho-1908296

ABSTRACT

Despite the very restrictive laws, Krakow is known as the city with the highest level of air pollution in Europe. It has been proven that, due to its location, air pollutants are transported to this city from neighboring municipalities. In this study, a complex geostatistical approach for spatio-temporal analysis of particulate matter (PM) concentrations was applied. For background noise reduction, data were recorded during the COVID-19 lockdown using 100 low-cost sensors and were validated based on indications from reference stations. Standardized Geographically Weighted Regression, local Moran's I spatial autocorrelation analysis, and Getis-Ord Gi* statistic for hot-spot detection with Kernel Density Estimation maps were used. The results indicate the relation between the topography, meteorological variables, and PM concentrations. The main factors are wind speed (even if relatively low) and terrain elevation. The study of the PM2.5/PM10 ratio allowed for a detailed analysis of spatial pollution migration, including source differentiation. This research indicates that Krakow's unfavorable location makes it prone to accumulating pollutants from its neighborhood. The main source of air pollution in the investigated period is solid fuel heating outside the city. The study shows the importance and variability of the analyzed factors' influence on air pollution inflow and outflow from the city.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , COVID-19/epidemiology , COVID-19/prevention & control , Cities , Communicable Disease Control , Environmental Monitoring/methods , Humans , Meteorological Concepts , Particulate Matter/analysis , Poland
2.
Sensors (Basel) ; 21(15)2021 Jul 31.
Article in English | MEDLINE | ID: covidwho-1335181

ABSTRACT

In this paper, we present a detailed analysis of the public data provided by low-cost sensors (LCS), which were used for spatial and temporal studies of air quality in Krakow. A PM (particulate matter) dataset was obtained in spring in 2021, during which a fairly strict lockdown was in force as a result of COVID-19. Therefore, we were able to separate the effect of solid fuel heating from other sources of background pollution, mainly caused by urban transport. Moreover, we analyzed the historical data of PM2.5 from 2010 to 2019 to show the effect of grassroots efforts and pro-clean-air legislation changes in Krakow. We designed a unique workflow with a time-spatial analysis of PM1, PM2.5, and PM10, and temperature data from Airly(c) sensors located in Krakow and its surroundings. Using geostatistical methods, we showed that Krakow's neighboring cities are the main sources of air pollution from solid fuel heating in the city. Additionally, we showed that the changes in the law in Krakow significantly reduced the PM concentration as compared to neighboring municipalities without a fossil fuel prohibition law. Moreover, our research demonstrates that informative campaigns and education are important initiating factors in order to bring about cleaner air in the future.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Cities , Communicable Disease Control , Environmental Monitoring , Heating , Humans , Pandemics , Particulate Matter/analysis , Poland , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL